

Aprobado según Punto 2 inciso 2.1 del Acta 9-2004 de sesión ordinaria de Junta Directiva celebrada el 11 de mayo de 2004

Resi	Resistencia de Materiales sección A / Segundo Semestre 2023													
Área	Código	Créditos	Periodos presenciales a la semana	Horas de trabajo en casa a la semana	Pre-requisitos	Postrequisitos								
Sistemas Estructurales	3.05.6	4	2	4	Física 2	Calculo Estructural								
Nombre completo del docente	Ing. Mónica	Ing. Mónica Maricela de Paz Sandoval												
Horario del Curso	Martes y Jue	Martes y Jueves de 10:00 a 11:20												
Plataforma de actividades	Moodle	Moodle Código de Auto matriculación RM-A-23												
Correo electrónico del docente	monica.depa	zsandoval@cuno	c.edu.gt		1									
Otro medio de contacto														

Meta competencias del Estudiante de Arquitectura

Capacidad de diseñar y producir, de manera creativa, obras de arquitectura de alta complejidad, que sustenten las necesidades que demanda el sistema social, analizando con ética y compromiso social la adecuada inserción de la arquitectura en el entorno ambiental y/o urbano, buscando incidir positivamente y con liderazgo en el mercado laboral del país.

Competencias del Área

Propone sistemas estructurales para proyectos arquitectónicos, basado en el conocimiento del comportamiento físico mecánico de los materiales que conforman la estructura, aplicando la legislación nacional y códigos internacionales, considerando el emplazamiento y función, con responsabilidad y eficiencia.

Competencias de la Asignatura

- a) Comprende los diferentes efectos que se manifiestan en los materiales como tensión, comprensión, corte y torsión. Diferencia los resultados obtenidos en materiales dúctiles y frágiles.
- b) Resuelve estructuras estáticamente determinadas apoyándose en los principios físicos de las leyes de Newton.

Aprobado según Punto 2 inciso 2.1 del Acta 9-2004 de sesión ordinaria de Junta Directiva celebrada el 11 de mayo de 2004

- c) Calcula y grafica los esfuerzos de tensión, comprensión y corte recomendando el material y la sección más apropiada para responder a las fuerzas (cargas) actuantes.
- d) Estudia las propiedades mecánicas de los materiales utilizados estructuralmente
- e) Estudia las propiedades de las secciones de los elementos estructurales. Establece y verifica los conocimientos teóricos para enfrentar otras materias del área de sistemas estructurales.

Semana de clases	Tema	Contenidos	Indicador del Logro	Bibliografía
1	Conceptos utilizados en la Resistencia de Materiales	 Tipos de Fuerzas (cargas) Concepto de esfuerzo Tipos de esfuerzos Tensión – Compresión, corte y torsión El esfuerzo normal promedio Cálculo de esfuerzos normales 	Comprende, analiza y resuelve correcta y hábilmente problemas de estructuras estáticamente determinadas para	Ferdinand P. Beer, E. Russell Johnston, Elliot R. Eisenberg. Mecánica vectorial paraingenieros. Estática. 8va. Edición. México: Mc Graw Hill. 2007
2	Propiedades mecánicas de los materiales	 Materiales dúctiles y frágiles Deformación unitaria La gráfica esfuerzo deformación unitaria y sus propiedades La ley de Hooke 	•	R. C. Hibbeler. Mecánica Vectorial para Ingenieros: ESTÁTICA. 10ma. Edición. Pearson
3	Propiedades mecánicas de los materiales	 Modulo de Tenasidad, Reciliencia 		
4 5	Propiedades geométricas de las secciones estructurales	 Propiedades geométricas de las secciones Centro de 	Los indicadores de logro de los temas 1 y 2 se aplican para todos los temas de la presente asignatura.	Robert L. Mott. Resistencia de materiales. Trad. Rodolfo Navarro.

Aprobado según Punto 2 inciso 2.1 del Acta 9-2004 de sesión ordinaria de Junta Directiva celebrada el 11 de mayo de 2004

		gravedad de un		5ta. Ed. Mexico:
		elemento estructural • Centroide de una sección estructural		Pearson
6	Propiedades mecánicas de los materiales	Momento de inercia de una sección estructural	Los indicadores de logro de los temas 1 y 2 se aplican para todos los temas de la presente asignatura.	La bibliogra fía mencionada en los temas del 1 al 4 se aplica para todas las unidades de esta asignatura.
7	Estructuras estáticamente determinadas	Calcula de estructuras estáticamente determinadas	Los infdicadores de logro de los temas 1 y 2 se aplican para todos los temas de la presente asignatura.	
8 9 10 11	Vigas estáticamente determinadas	 Fuerza cortante y momento flexiónante Efectos mecánicos producidos por lafuerza cortante y el momento de flexión Dibujo de diagramas de fuerza cortante y momento de flexión por el método de área – momento 	Los indicadores de logro de los temas 1 y 2 se aplican para todos los temas de la presente asignatura.	
12 13 14 15	Teoría de la Flexión Y repaso de todo el contenido	 Las fórmulas de la flexión Cálculo de los esfuerzos de tensión, compresión y corte en una viga estáticamente determinada – gráficas 	Los indicadores de logro de los temas 1 y 2 se aplican para todos los temas de la presente asignatura.	La bibliograf ía mencionada en I os temas del 1 al 4 se aplica para todas las unidades de esta asignatura.
16		Examen final		

Aprobado según Punto 2 inciso 2.1 del Acta 9-2004 de sesión ordinaria de Junta Directiva celebrada el 11 de mayo de 2004

Estrategias de Aprendizaje (metodologías y técnicas)

El catedrático será un facilitador del aprendizaje del alumno, su función será la de apoyo y orientación al alumno para alcanzar cada una de las competencias propuestas en el curso.

Para obtener los indicadores de logro propuestos en esta asignatura se realizarán las siguientes actividades:

- Se promoverá la lectura independiente de las bibliográficas.
- Se desarrollará explicaciones didácticas por parte del profesor, apoyándose en tecnología educativa y en las nuevas tendencias informáticas.
- Se promoverá el trabajo en grupo desarrollándose laboratorios taller en el cual se realizarán pruebas de materiales dúctiles y frágiles.

Evaluación

La ponderación de la evaluación del curso es la siguiente:

Resolución de tareas en grupo (no se recibirán tareas

individuales)

Evaluaciones parciales (2 exámenes de 20 pts. c/u)

Laboratorio

Evaluación Final

10 puntos
40 puntos
20 puntos
30 puntos

- Se realizarán tareas y/o trabajos de índole practico en donde los estudiantes pondrán a prueba sus conocimientos y habilidades obtenidos, dichas tareas se entregarán en grupo y también se resolverán problemas o ejercicios individuales de cada tema estudiado,
- Se realizarán dos exámenes parciales y un examen final que resolverán en forma individual para medir la retención de conocimientos adquiridos en el aula.
- Se realizará laboratorios de tipo experimental poniendo a prueba los materiales usados estructuralmente dúctiles y frágiles.
- La resolución de los ejercicios tanto de tareas como de los exámenes tiene puntos en proceso y puntos por respuesta final, no puede existir una sin la otra.
- La cantidad y tipo de actividades que se realizan dentro del laboratorio son responsabilidad del catedrático encargado del mismo, quien deberá presentar su programa de trabajo al coordinador del área al inicio del ciclo lectivo. La asistencia mínima a las actividades del laboratorio es de 80%, quedando fuera del mismo, cualquier estudiante que no cumpla con este requisito.

Es indispensable la aprobación del Laboratorio con un mínimo de 75% (15 puntos), para dar el valor a la zona correspondiente; en caso contrario, se considera al estudiante sin derecho a examen final o de retrasada en las dos oportunidades establecidas. (Artículos 17, 18 y 19 del Normativo de Evaluación y Promoción del estudiante de la unidad del área de Sistemas Estructurales de la Facultad de Arquitectura de la Universidad de San Carlos).

Aprobado según Punto 2 inciso 2.1 del Acta 9-2004 de sesión ordinaria de Junta Directiva celebrada el 11 de mayo de 2004

Normas Generales

Requisitos para optar al examen final o de recuperación: a) Asistencia al curso, con un mínimo del 80%. b) Zona Mínima de 31 puntos. Nota mínima de laboratorio: 15 puntos. Nota Mínima para aprobar el curso: 61 puntos.

Bibliografía y materiales complementarios

Mecanica Vectorial para Ingenieros. Beer y Johnston. Mc Graw Hill Mecánica Vectorial para Ingenieros. Estatica. Hibbeler. Resistencia de materiales. Robert Mott.

Aprobado según Punto 2 inciso 2.1 del Acta 9-2004 de sesión ordinaria de Junta Directiva celebrada el 11 de mayo de 2004

CRONOGRAMA

		CRONO	GR/	AMA	SEG	UND	o si	EMES	STR	E 20	23													
CU SE CA	RRERA: ARQUITECTURA RSO: RESISTENCIA DE MATERIALES CCIÓN A TENTRO MONICA DE PAZ RARIO: MARTES Y JUEVES DE 10:00 A 11:20																							
No CONTENIDO		ТЕМА		JUI					GOSTO				EPTIEMBRE				TUBRE			NOVIEMBRI				
1	Presentación del programa. Tipos de fuerzas (cargas),	CONCEPTOS UTILIZADO: EN RESISTENCIA DE MATERIALES	1	2	3	4	1	2	3	4	5	1	2	3	4	1	2	3	4	1	2	3	4	5
2	Materiales ductiles y fragiles, deformacion unitaria, la grafica esfuerzo-deformacion, ley de Hooke, modulo de elasticidad, tenacidad, recillencia, calculo de esfuerzos en materiales ductiles y fragiles.	PROPIEDADES MECANICAS DE LOS MATERIALES																						
3	Centro de gravedad de un elemento estructural, centroide de una seccion estructural, momento de inercia de una seccion estructural.	PROPIEDADES GEOMETRICAS DE LA SECCIONES ESTRUCTURALES																						
4	Primer parcial (22-08-23)																							
5	Calculo de estructuras estaticamente determinadas, Fuerza cortante y momento flexionante, efectos mecanicos, diagramas y metodo del área de momento	ESTRUCTURAS ESTATICAMENTE DETERMINAS											FERIADO DE INDEPENDENCIA											
6	Segundo parcial (10-10-23)																							
7	Teoria de flexión y repaso	TEORIA DE LA FLEXION																						
8	Examen final (07-11-23)																							

. Monto de Paz

Vo.Bo._

Coordinador de Área